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Two general classes of steroidal glycosides are isolated from 
the purple foxglove (Digitalis purpurea L.)-1'2 Differentiating 
features of these two structural types are found in both the aglycone 
(steroidal) and the oligosaccharide sectors. The more clinically 
advanced family is the cardenolides, in which the aglycone bears 
a j8-oriented butenolide attached at C-17 and a /3-hydroxyl group 
at C-14. Glycosides of this type have been used for many years 
in the treatment of cardiac insufficiencies (cf. digitalis).la'3 

The other group, called saponins, is one in which the steroid 
aglycone contains a spiroketal linkage at C-21.4 Separation of 
the individual components of a crude extract of saponins is a 
painstaking task. Investigation of the therapeutic potential of 
individual saponins has thus been impeded. Nonetheless, members 
of this class have been shown to have antiviral5 as well as antitumor 
properties.6 

Our interest in the synthesis of steroidal glycosides was spurred 
by the prospect that such an effort could provide new insights 
into the construction of branched oligosaccharides. It was also 
hoped that, through this chemistry, novel counterparts to current 
cardiotonic agents could be assembled and evaluated. For this 
purpose, we directed our first foray in this area toward the 
synthesis7 of the naturally occurring desgalactotigonin (l).2b>8 
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This compound represented a suitable goal for synthesis from 
several standpoints. First, the steroidal aglycone, tigogenin (2), 
is commercially available.9 Moreover, its glycosidic ensemble is 
sufficiently complicated to properly test our strategy for reaching 
complex branched oligosaccharides. The guiding logic of the 
proposal is summarized in Scheme I. Glycal epoxide 4, derived 
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from 3, is subjected to the action of a glycosyl acceptor (GA). 
It is seen that the product 5 contains a unique hydroxyl at C-2 
of the erstwhile pyranose donor (see asterisk in Scheme I). This 
hydroxyl group serves as the acceptor in a reaction with a glycosyl 
donor (GD). Branched 6 is thus produced. While Scheme I 
illustrates the assemblage of an oligosaccharide, successful 
outcome could surely find ready application to other branched 
glycoconjugates. Herein we report the first synthesis of the 
branched saponin 1. The work is illustrative of the power of the 
glycal assembly method for constructing such complex targets. 
We note that Thiem and co-workers were the first to demonstrate 
the usefulness of glycals in the synthesis of steroidal glycosides.10 

However, the 1,2-anhydrosugar methodology, described herein, 
constitutes a major expansion of the role of glycals in that it leads 
to fully-oxygenated branched glycosides. 

Reaction of D-galactal derivative 711 with 3,3-dimethyldiox
irane12 generated 8 (Scheme H). Without benefit of purification, 
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8 was used to stereoselectively glycosylate13 aglycone 2(1.2 equiv) 
to afford /S-glycoside 9 in 89% yield. We have found11 the cis-
3,4-cyclic carbonate linkage to be particularly effective in 
promoting highly stereoselective epoxidation (see 7 —• 8) and 
/3-galactosylation. It was now necessary to reconstitute the 
protecting pattern on the galactosyl moiety to identify the C-4 
axial hydroxyl as the glycosyl acceptor. This was accomplished 
as shown via intermediates 10,11,12. The latter was converted 
to its uncharacterized tri-n-butylstannyl ether 12a,14 which was 
to serve as the coupling partner with disaccharide donor 17. 

Indeed, glycal assembly was used in fashioning 17 (Scheme 
III). The D-xylal derivative 1315 was converted to its a-epoxide 
14 by the action of 3,3-dimethyldioxirane. The epoxidation was 
stereoselective in the desired sense (a), though only to the extent 
of 4:1. Without separation, 14 was coupled to 1516 (1.5 equiv) 
under the usual conditions to afford disaccharide glycal 16,17 

which, after benzylation followed by epoxidation, gave 17. 
Coupling of the in situ generated 12a with 17 (0.7 equiv) was 
mediated by zinc triflate, giving rise to 18 in 46% yield. This was 
an important step in that it gave access to the /3-glycoside of the 
rather hindered axial hydroxyl center at C-4 of D-galactose. Again, 
glycal epoxide chemistry was used to generate 22, the coupling 
partner of 18. Toward this end, epoxidation of glycal 19 by the 
dioxirane method afforded 20,18 which was subjected to our 
fluoridolysis protocol" to yield 21.20 The unique C-2 hydroxyl 
was protected as its benzoate 22. The strategically placed 
benzoate served as a neighboring group director to promote 
/3-attack by the glycosyl acceptor. The stage was at hand to 
implement the strategy implied in Scheme I. In the event, coupling 

(11) Gervay, J.; Peterson, J. M.; Oriyama, T.; Danishefsky, S. J. J. Org. 
Chem., in press. 
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(15) Weygand, F. Methods Carbohydr. Chem. 1962, /, 182. 
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of 16 along with the a-Zyxo-hexopyranoside, formed from reaction of 15 with 
the /S-epoxide. Following benzylation, these two stereoisomers were separated 
by column chromatography on silica gel. 

(18) Several attempts were made to couple 20 with 18 using a number of 
different conditions. However, these attempts failed to provide the desired 
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(19) Gordon, D. M.; Danishefsky, S. J. Carbohydr. Res. 1990, 206, 361. 

of 18 and 22, mediated by stannous triflate,21 gave a 56% yield 
of23. Finally, sequential deacylation and debenzylation afforded 
the target saponin 1 in 92% yield.22 

The synthesis described herein required a solution to several 
otherwise formidable problems in complex oligosaccharide syn
thesis. Most notable were the glycosidic linkage to the axial C-4 
hydroxyl of the A ring and the "ortho" branched glycoside pattern 
of the B ring.23 The successful application of glycal epoxides to 
solve all of the glycosidations involved in this construction speaks 
well for their potentiality in simplifying the assembly of complex 
oligosaccharides and glycoconjugates. Such applications have 
recently been enhanced by applying the glycal methodoloy in a 
synthesis of oligosaccharides on a solid support.24 
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